Long-range magnetic coupling across a polar insulating layer.

نویسندگان

  • W M Lü
  • Surajit Saha
  • X Renshaw Wang
  • Z Q Liu
  • K Gopinadhan
  • A Annadi
  • S W Zeng
  • Z Huang
  • B C Bao
  • C X Cong
  • M Venkatesan
  • T Yu
  • J M D Coey
  • Ariando
  • T Venkatesan
چکیده

Magnetic interactions in solids are normally mediated by short-range exchange or weak dipole fields. Here we report a magnetic interaction that can propagate over long distances (∼10 nm) across a polar insulating oxide spacer. Evidence includes oscillations of magnetization, coercivity and field-cooled loop shift with the thickness of LaAlO3 in La0.67Sr0.33MnO3/LaAlO3/SrTiO3 heterostructures. Similar modifications of the hysteresis loop appear when two coupled films of La0.67Sr0.33MnO3 are separated by LaAlO3, or another polar insulator, but they are absent when the oxide spacer layer is nonpolar. The loop shift is attributed to strong spin-orbit coupling and Dzyaloshinskii-Moriya interaction at the interfaces. There is evidence from inelastic light scattering that the polar spacer mediates long-range transmission of orbital magnetization. This coupling mechanism is expected to apply for any conducting ferromagnetic oxide with mixed valence; in view of electron hopping frequency involved, it raises the prospect of terahertz tunability of magnetic coupling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Heat Treatment Time on the Characteristics of Coating Formed on Nanocrystalline Finemet Foils

In the present research, amorphous Fe73.5Si13.5B9Nb3Cu1 Finemet foils, 21-26µm in thickness and 5mm in width, were prepared by Planar Flow Casting (PFC) process. Wound cores of amorphous Finemet foils were simultaneously annealed and heat treated at 540°C for 60, 120 and 240 minutes in steam and air flow to form oxide insulating coating layer on both surfaces of the foils. The structure of nano...

متن کامل

Interlayer coupling through a dimensionality-induced magnetic state

Dimensionality is known to play an important role in many compounds for which ultrathin layers can behave very differently from the bulk. This is especially true for the paramagnetic metal LaNiO3, which can become insulating and magnetic when only a few monolayers thick. We show here that an induced antiferromagnetic order can be stabilized in the [111] direction by interfacial coupling to the ...

متن کامل

Investigation of weak interlayer exchange coupling in GaMnAs/GaAs superlattices with insulating nonmagnetic spacers

A robust long-range antiferromagnetic coupling between ferromagnetic Ga0.97Mn0.03As layers has previously been realized via insertion of nonmagnetic Be-doped GaAs spacers between the magnetic layers. In this paper we report the observation of weak antiferromagnetic coupling between Ga0.97Mn0.03As layers through undoped GaAs spacers with thicknesses as large as 25 monolayers. The field and the t...

متن کامل

Influence of ferromagnetic substrate on the magnetoresistance of Cr film across a nonmagnetic insulating layer

~5 nm! Cr/(x nm) MgO/Mn0.52Zn0.48Fe2O4 ~MnZn spinel! substrate (1,x,7 nm), as well as ~5 nm! Cr/~7 nm! MgO/glass substrate structures have been grown using molecular beam epitaxy. The influence of the MnZn spinel on the in-plane transport and magnetotransport properties of the Cr layer were studied. The existence of pinholes in the MgO layer was explored by evaluating resistance versus temperat...

متن کامل

Weakly Coupled Antiferromagnetic Quantum Spin Chains

Quasi-one-dimensional quantum antiferromagnets formed by a d-dimensional hypercubic lattice of weakly coupled spin-1/2 antiferromagnetic Heisenberg chains are studied by combining exact results in one-dimension and renormalization group analyses of the interchain correlations. It is shown that d-dimensional magnetic long-range order develops at zero-temperature for infinitesimal antiferromagnet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016